En un sistema de ecuaciones diferenciales ordinarias de cualquier orden, puede ser reducido a un sistema equivalente de primer orden, si se introducen nuevas variables y ecuaciones. Por esa razón en este artículo sólo se consideran sistemas de ecuaciones de primer orden. Un sistema de ecuaciones diferenciales ordinarias de primer orden escrito en forma explícita es un sistema de ecuaciones de la forma:
Reducción a un sistema de primer orden
Dado un sistema de ecuaciones diferenciales de orden n con m ecuaciones:
Existe un sistema equivalente de primer orden con a lo sumo (n+1)xm ecuaciones. Para ver esto consideremos un sistema en que intervienen m funciones incógnitas xi y sus n derivadas, e introduzcamos un nuevo conjunto de variables yi,k definidos de la siguiente manera:
El sistema de primer orden equivalente en las variables yi,k resulta ser:
Como ejemplo de reducción de un sistema de ecuaciones diferenciales podemos considerar las ecuaciones de movimiento de la mecánica newtoniana de una partícula que es un sistema de segundo orden con tres ecuaciones:
Si se introducen tres funciones incógnita nuevas que representan la velocidad, el sistema anterior se puede reducir a un sistema de primer orden y seis ecuaciones:
¿QUÉ SON LOS MÍNIMOS CUADRADOS? Es un procedimiento de análisis numérico en la que, dados un conjunto de datos (pares ordenados y familia de funciones), se intenta determinar la función continua que mejor se aproxime a los datos (línea de regresión o la línea de mejor ajuste), proporcionando una demostración visual de la relación entre los puntos de los mismos. En su forma más simple, busca minimizar la suma de cuadrados de las diferencias ordenadas (llamadas residuos) entre los puntos generados por la función y los correspondientes datos. Este método se utiliza comúnmente para analizar una serie de datos que se obtengan de algún estudio, con el fin de expresar su comportamiento de manera lineal y así minimizar los errores de la data tomada. La creación del método de mínimos cuadrados generalmente se le acredita al matemático alemán Carl Friedrich Gauss, quien lo planteó en 1794 pero no lo publicó sino hasta 1809. El matemático francés Andrien-Marie Legendre fue ...
INTERPOLACION LINEAL Y CUADRATICA En el subcampo matemático del análisis numérico , se denomina interpolación a la obtención de nuevos puntos partiendo del conocimiento de un conjunto discreto de puntos. En ingeniería y algunas ciencias es frecuente disponer de un cierto número de puntos obtenidos por muestreo o a partir de un experimento y pretender construir una función que los ajuste. Otro problema estrechamente ligado con el de la interpolación es la aproximación de una función complicada por una más simple. Si tenemos una función cuyo cálculo resulta costoso, podemos partir de un cierto número de sus valores e interpolar dichos datos construyendo una función más simple. En general, por supuesto, no obtendremos los mismos valores evaluando la función obtenida que si evaluásemos la función original, si bien dependiendo de las características del problema y del método de interpolación ...
Comentarios
Publicar un comentario